
Package index
-
auto_ml() - Automatic Machine Learning
-
bag_mars() - Ensembles of MARS models
-
bag_mlp() - Ensembles of neural networks
-
bag_tree() - Ensembles of decision trees
-
bart() - Bayesian additive regression trees (BART)
-
boost_tree() - Boosted trees
-
cubist_rules() - Cubist rule-based regression models
-
C5_rules() - C5.0 rule-based classification models
-
decision_tree() - Decision trees
-
discrim_flexible() - Flexible discriminant analysis
-
discrim_linear() - Linear discriminant analysis
-
discrim_quad() - Quadratic discriminant analysis
-
discrim_regularized() - Regularized discriminant analysis
-
gen_additive_mod() - Generalized additive models (GAMs)
-
glm_grouped() - Fit a grouped binomial outcome from a data set with case weights
-
linear_reg() - Linear regression
-
logistic_reg() - Logistic regression
-
mars() - Multivariate adaptive regression splines (MARS)
-
mlp() - Single layer neural network
-
multinom_reg() - Multinomial regression
-
naive_Bayes() - Naive Bayes models
-
nearest_neighbor() - K-nearest neighbors
-
null_model() - Null model
-
pls() - Partial least squares (PLS)
-
poisson_reg() - Poisson regression models
-
proportional_hazards() - Proportional hazards regression
-
rand_forest() - Random forest
-
rule_fit() - RuleFit models
-
survival_reg() - Parametric survival regression
-
svm_linear() - Linear support vector machines
-
svm_poly() - Polynomial support vector machines
-
svm_rbf() - Radial basis function support vector machines
-
autoplot(<model_fit>)autoplot(<glmnet>) - Create a ggplot for a model object
-
add_rowindex() - Add a column of row numbers to a data frame
-
augment(<model_fit>) - Augment data with predictions
-
case_weights - Using case weights with parsnip
-
case_weights_allowed() - Determine if case weights are used
-
.cols().preds().obs().lvls().facts().x().y().dat() - Data Set Characteristics Available when Fitting Models
-
extract_spec_parsnip(<model_fit>)extract_fit_engine(<model_fit>)extract_parameter_set_dials(<model_spec>)extract_parameter_dials(<model_spec>)extract_fit_time(<model_fit>) - Extract elements of a parsnip model object
-
fit(<model_spec>)fit_xy(<model_spec>) - Fit a Model Specification to a Dataset
-
reexportsautoplot%>%fitfit_xytidyglanceaugmentrequired_pkgscontr_one_hotextract_spec_parsnipextract_fit_engineextract_parameter_set_dialsextract_parameter_dialstunefrequency_weightsimportance_weightsextract_fit_timevarying_args - Objects exported from other packages
-
control_parsnip() - Control the fit function
-
glance(<model_fit>) - Construct a single row summary "glance" of a model, fit, or other object
-
matrix_to_quantile_pred() - Reformat quantile predictions
-
model_fit - Model Fit Objects
-
model_formula - Formulas with special terms in tidymodels
-
model_spec - Model Specifications
-
multi_predict() - Model predictions across many sub-models
-
parsnip_addin() - Start an RStudio Addin that can write model specifications
-
predict(<model_fit>)predict_raw() - Model predictions
-
repair_call() - Repair a model call object
-
set_args()set_mode() - Change elements of a model specification
-
set_engine() - Declare a computational engine and specific arguments
-
show_engines() - Display currently available engines for a model
-
sparse_data - Using sparse data with parsnip
-
tidy(<model_fit>) - Turn a parsnip model object into a tidy tibble
-
translate() - Resolve a Model Specification for a Computational Engine
-
update(<bag_mars>)update(<bag_mlp>)update(<bag_tree>)update(<bart>)update(<boost_tree>)update(<C5_rules>)update(<cubist_rules>)update(<decision_tree>)update(<discrim_flexible>)update(<discrim_linear>)update(<discrim_quad>)update(<discrim_regularized>)update(<gen_additive_mod>)update(<linear_reg>)update(<logistic_reg>)update(<mars>)update(<mlp>)update(<multinom_reg>)update(<naive_Bayes>)update(<nearest_neighbor>)update(<pls>)update(<poisson_reg>)update(<proportional_hazards>)update(<rand_forest>)update(<rule_fit>)update(<surv_reg>)update(<survival_reg>)update(<svm_linear>)update(<svm_poly>)update(<svm_rbf>) - Updating a model specification
-
ctree_train()cforest_train() - A wrapper function for conditional inference tree models
-
condense_control() - Condense control object into strictly smaller control object
-
reexportsautoplot%>%fitfit_xytidyglanceaugmentrequired_pkgscontr_one_hotextract_spec_parsnipextract_fit_engineextract_parameter_set_dialsextract_parameter_dialstunefrequency_weightsimportance_weightsextract_fit_timevarying_args - Objects exported from other packages
-
set_new_model()set_model_mode()set_model_engine()set_model_arg()set_dependency()get_dependency()set_fit()get_fit()set_pred()get_pred_type()show_model_info()pred_value_template()set_encoding()get_encoding() - Tools to Register Models
-
maybe_matrix()maybe_data_frame() - Fuzzy conversions
-
min_cols()min_rows() - Execution-time data dimension checks
-
max_mtry_formula() - Determine largest value of mtry from formula. This function potentially caps the value of
mtrybased on a formula and data set. This is a safe approach for survival and/or multivariate models.
-
required_pkgs(<model_spec>)required_pkgs(<model_fit>) - Determine required packages for a model
-
req_pkgs()deprecated - Determine required packages for a model
-
.extract_surv_status - Extract survival status
-
.extract_surv_time - Extract survival time
-
.model_param_name_key() - Translate names of model tuning parameters
-
.get_prediction_column_names() - Obtain names of prediction columns for a fitted model or workflow