set_args()
can be used to modify the arguments of a model specification while
set_mode()
is used to change the model's mode.
Usage
set_args(object, ...)
set_mode(object, mode, ...)
# S3 method for class 'model_spec'
set_mode(object, mode, quantile_levels = NULL, ...)
Arguments
- object
- ...
One or more named model arguments.
- mode
A character string for the model type (e.g. "classification" or "regression")
- quantile_levels
A vector of values between zero and one (only for the
"quantile regression"
mode); otherwise, it isNULL
. The model uses these values to appropriately train quantile regression models to make predictions for these values (e.g.,quantile_levels = 0.5
is the median).
Examples
rand_forest()
#> Random Forest Model Specification (unknown mode)
#>
#> Computational engine: ranger
#>
rand_forest() %>%
set_args(mtry = 3, importance = TRUE) %>%
set_mode("regression")
#> Random Forest Model Specification (regression)
#>
#> Main Arguments:
#> mtry = 3
#>
#> Engine-Specific Arguments:
#> importance = TRUE
#>
#> Computational engine: ranger
#>
linear_reg() %>%
set_mode("quantile regression", quantile_levels = c(0.2, 0.5, 0.8))
#> Linear Regression Model Specification (quantile regression)
#>
#> Computational engine: lm
#>
#> Quantile levels: 0.2, 0.5, and 0.8.