Package index
-
auto_ml()
- Automatic Machine Learning
-
bag_mars()
- Ensembles of MARS models
-
bag_mlp()
- Ensembles of neural networks
-
bag_tree()
- Ensembles of decision trees
-
bart()
- Bayesian additive regression trees (BART)
-
boost_tree()
- Boosted trees
-
cubist_rules()
- Cubist rule-based regression models
-
C5_rules()
- C5.0 rule-based classification models
-
decision_tree()
- Decision trees
-
discrim_flexible()
- Flexible discriminant analysis
-
discrim_linear()
- Linear discriminant analysis
-
discrim_quad()
- Quadratic discriminant analysis
-
discrim_regularized()
- Regularized discriminant analysis
-
gen_additive_mod()
- Generalized additive models (GAMs)
-
glm_grouped()
- Fit a grouped binomial outcome from a data set with case weights
-
linear_reg()
- Linear regression
-
logistic_reg()
- Logistic regression
-
mars()
- Multivariate adaptive regression splines (MARS)
-
mlp()
- Single layer neural network
-
multinom_reg()
- Multinomial regression
-
naive_Bayes()
- Naive Bayes models
-
nearest_neighbor()
- K-nearest neighbors
-
null_model()
- Null model
-
pls()
- Partial least squares (PLS)
-
poisson_reg()
- Poisson regression models
-
proportional_hazards()
- Proportional hazards regression
-
rand_forest()
- Random forest
-
rule_fit()
- RuleFit models
-
survival_reg()
- Parametric survival regression
-
svm_linear()
- Linear support vector machines
-
svm_poly()
- Polynomial support vector machines
-
svm_rbf()
- Radial basis function support vector machines
-
autoplot(<model_fit>)
autoplot(<glmnet>)
- Create a ggplot for a model object
-
add_rowindex()
- Add a column of row numbers to a data frame
-
augment(<model_fit>)
- Augment data with predictions
-
case_weights
- Using case weights with parsnip
-
case_weights_allowed()
- Determine if case weights are used
-
.cols()
.preds()
.obs()
.lvls()
.facts()
.x()
.y()
.dat()
- Data Set Characteristics Available when Fitting Models
-
extract_spec_parsnip(<model_fit>)
extract_fit_engine(<model_fit>)
extract_parameter_set_dials(<model_spec>)
extract_parameter_dials(<model_spec>)
extract_fit_time(<model_fit>)
- Extract elements of a parsnip model object
-
fit(<model_spec>)
fit_xy(<model_spec>)
- Fit a Model Specification to a Dataset
-
reexports
autoplot
%>%
fit
fit_xy
tidy
glance
augment
required_pkgs
extract_spec_parsnip
extract_fit_engine
extract_parameter_set_dials
extract_parameter_dials
tune
frequency_weights
importance_weights
extract_fit_time
varying_args
- Objects exported from other packages
-
control_parsnip()
- Control the fit function
-
glance(<model_fit>)
- Construct a single row summary "glance" of a model, fit, or other object
-
matrix_to_quantile_pred()
- Reformat quantile predictions
-
model_fit
- Model Fit Objects
-
model_formula
- Formulas with special terms in tidymodels
-
model_spec
- Model Specifications
-
multi_predict()
- Model predictions across many sub-models
-
parsnip_addin()
- Start an RStudio Addin that can write model specifications
-
predict(<model_fit>)
predict_raw()
- Model predictions
-
repair_call()
- Repair a model call object
-
set_args()
set_mode()
- Change elements of a model specification
-
set_engine()
- Declare a computational engine and specific arguments
-
show_engines()
- Display currently available engines for a model
-
sparse_data
- Using sparse data with parsnip
-
tidy(<model_fit>)
- Turn a parsnip model object into a tidy tibble
-
translate()
- Resolve a Model Specification for a Computational Engine
-
update(<bag_mars>)
update(<bag_mlp>)
update(<bag_tree>)
update(<bart>)
update(<boost_tree>)
update(<C5_rules>)
update(<cubist_rules>)
update(<decision_tree>)
update(<discrim_flexible>)
update(<discrim_linear>)
update(<discrim_quad>)
update(<discrim_regularized>)
update(<gen_additive_mod>)
update(<linear_reg>)
update(<logistic_reg>)
update(<mars>)
update(<mlp>)
update(<multinom_reg>)
update(<naive_Bayes>)
update(<nearest_neighbor>)
update(<pls>)
update(<poisson_reg>)
update(<proportional_hazards>)
update(<rand_forest>)
update(<rule_fit>)
update(<surv_reg>)
update(<survival_reg>)
update(<svm_linear>)
update(<svm_poly>)
update(<svm_rbf>)
- Updating a model specification
-
ctree_train()
cforest_train()
- A wrapper function for conditional inference tree models
-
condense_control()
- Condense control object into strictly smaller control object
-
contr_one_hot()
- Contrast function for one-hot encodings
-
set_new_model()
set_model_mode()
set_model_engine()
set_model_arg()
set_dependency()
get_dependency()
set_fit()
get_fit()
set_pred()
get_pred_type()
show_model_info()
pred_value_template()
set_encoding()
get_encoding()
- Tools to Register Models
-
maybe_matrix()
maybe_data_frame()
- Fuzzy conversions
-
min_cols()
min_rows()
- Execution-time data dimension checks
-
max_mtry_formula()
- Determine largest value of mtry from formula. This function potentially caps the value of
mtry
based on a formula and data set. This is a safe approach for survival and/or multivariate models.
-
reexports
autoplot
%>%
fit
fit_xy
tidy
glance
augment
required_pkgs
extract_spec_parsnip
extract_fit_engine
extract_parameter_set_dials
extract_parameter_dials
tune
frequency_weights
importance_weights
extract_fit_time
varying_args
- Objects exported from other packages
-
required_pkgs(<model_spec>)
required_pkgs(<model_fit>)
- Determine required packages for a model
-
req_pkgs()
deprecated - Determine required packages for a model
-
.extract_surv_status
- Extract survival status
-
.extract_surv_time
- Extract survival time
-
.model_param_name_key()
- Translate names of model tuning parameters
-
.get_prediction_column_names()
- Obtain names of prediction columns for a fitted model or workflow